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Abstract9

Roughly 30 years have passed since the last publication of a linear resolution calculation of density inside the Earth. Since
that time, the data set of free oscillation degnerate frequencies has been completely re-estimated taking into account the
biassing effects of splitting and coupling due to 3D structure. This paper presents a new resolution analysis based on the new
data and focuses on two particular issues: (1) the density jump at the inner-core boundary which is important in discussions
of the maintenance of the geodynamo; and (2) a possible density excess in the lowermost mantle which might be indicative of
a “hot abyssal layer”. We find that the density jump at the inner-core boundary is 0.82± 0.18 Mg m−3 which is significantly
larger than previously thought. We also find little support for an excess density in the lowermost mantle though an increase
of 0.4% is possible.
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1. Introduction20

New calculations of the energy required to power21

the dynamo(Buffet et al., 1996; Labrosse et al., 1997;22

Stacey and Stacey, 1999; Gubbins et al., in press)sug-23

gest that there may be difficulty in maintaining a dy-24

namo throughout earth history and that the inner-core25

of the Earth is a relatively young feature. It has long26

been known that an efficient way of maintaining27

the dynamo is by compositional convection associ-28

ated with the growth of the inner-core(Loper, 1978;29

Gubbins et al., 1979). The amount of energy that30

this source can produce is critically dependent on the31

density jump at the inner-core boundary (ICB) (more32

correctly, on the percentage of the density jump which33

is associated with a compositional jump at the ICB).34

∗ Corresponding author. Fax:+1-858-534-5332.
E-mail address: guy@igpp.ucsd.edu (G. Masters).

A larger density jump means that a dynamo can be35

maintained with slower growth rates of the inner-core36

than would otherwise be necessary. Another issue37

of considerable interest which requires an accurate38

knowledge of the density within the Earth is the pos-39

sible existence of a compositionally distinct layer in40

the lower mantle. Such a layer has been proposed by41

Kellogg et al. (1999)as a repository for a variety of 42

geochemical components including radioactive ele-43

ments. Such a layer would be hot but would maintain44

a higher density than the mantle above because of a45

differing chemical composition.Kellogg et al. (1999) 46

estimate that an excess density of about 1% (over47

an isochemical mantle) would result in a stable layer48

though with a strong topography on its upper bound-49

ary. This strong topography would make the layer50

difficult to detect using standard seismic techniques.51

The density jump at the ICB can currently be con-52

strained using two techniques. One relies on estimates53
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of the impedance contrast at the ICB based on the am-54

plitude of the reflected phasePKiKP. PKiKP is rarely55

observed and there is some concern that observations56

may only be possible when focusing gives unusually57

large amplitudes. Indeed, early work using this tech-58

nique (Bolt and Qamar, 1970; Souriau and Souriau,59

1989)suggested that the density jump may be as large60

as 1.6 Mg m−3 which is about three times the currently61

accepted value.Shearer and Masters (1990)evalu-62

ated these results and found thatPKiKP should be63

observed much more often if the density jump really64

is this large. They gave an approximate upper limit of65

1.0 Mg m−3. New measurements using high frequency66

seismic arrays may go some way to refining this67

estimate.68

The second technique uses the fact that free os-69

cillation frequencies are sensitive to density within70

the Earth. The last published general calculation of71

resolution of density was given byGilbert et al.72

(1973) though Masters (1979)gave a discussion of73

how well the density jump at the ICB was resolved74

using a free oscillation data set compiled byGilbert75

and Dziewonski (1975). Much of the original data76

set came from spectra of digitized recordings of a77

single earthquake—the 1970 Colombian event. Since78

that time, many great earthquakes have been recorded79

by the ever-expanding global digital seismic network80

allowing an extensive evaluation of the effect of 3D81

structure on free oscillation frequencies. This has82

resulted in a data set of extremely accurate degener-83

ate frequencies for some 850 free oscillations, over84

50of which sample the inner-core (see the Refer-85

ence Earth Model web page for details:http://mahi.86

ucsd.edu/Gabi/rem.html). Of these 50, the radial87

modes provide some of the greatest sensitivity to88

density in the deep earth(Dahlen and Tromp, 1998).89

Density resolution in the Earth using free oscillation90

frequencies has been recently discussed byKennett91

(1998) who uses a non-linear technique. Computa-92

tional considerations lead him to use a rather small93

subset of mode frequencies and he also assumed that94

the seismic velocities were known perfectly. In the95

next section, we present a standardlinear resolution96

analysis using the full mode dataset with ascribed97

error bounds on the frequencies and taking into ac-98

count uncertainties in the seismic velocities. This99

gives a good indication of the resolution available100

to us. Using the complete mode data set and allow-101

ing trade-offs between seismic velocity and density102

with the non-linear method is still computationally103

infeasible but should be kept in mind for the future.104

2. A standard resolution analysis 105

A (fairly) straightforward application of perturba-106

tion theory relates a relative perturbation in thek’th 107

mode degenerate frequency (ωk) to perturbations in the108

radial profiles of seismic velocities and density as well109

as perturbations in the radii of discontinuities (hj): 110111

δωk

ωk

± σk =
∫ a

0

[
Kk(r)

δVp

Vp

(r) + Mk(r)
δVs

Vs

(r)
112

+ Rk(r)
δρ

ρ
(r)

]
dr +

∑
j

Ajkδhj

113

(1) 114

where the kernels (K, M, R, Aj) can be easily com-115

puted for each mode from the eigenfunctions of some116

reference model(Woodhouse and Dahlen, 1978;117

Dahlen and Tromp, 1998). Eq. (1) assumes that the118

reference model is linearly close to the real spheri-119

cally averaged Earth which is a good approximation120

for most modes (though see below). 121

First, we perform a standard resolution analysis122

following Backus and Gilbert (1970). We attempt to 123

construct a datum from a linear combination of all our124

free oscillations frequencies which is sensitive only125

to some property (e.g. density) concentrated about126

some target radius (r0) . That is, we seek multipliers,127

ak, such that 128129∑
k

ak

δωk

ωk

=
∫ a

0

[
K(r)

δVp

Vp

(r) +M(r)
δVs

Vs

(r)
130

+R(r)
δρ

ρ
(r)

]
dr +

∑
j

Ajδhj

131

(2) 132

whereK = ∑
k akKk,M = ∑

k akMk,R = ∑
k ak 133

Rk,Aj = ∑
k akAjk. If we were trying to resolve den-134

sity, we should choose the mulitpliers to makeR as 135

peaked as possible at the target radius andK,M,Aj 136

are made as small as possible (preferably zero). In137

this case,R is called the “resolving kernel”. Our138

linear combination of data will then be related to the139
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average of density integrated over the resolving kernel140

(this is called the “local average” in Backus–Gilbert141

terminology). This local average is made unbiased by142

forcing the resolving kernel to be unimodular:143

a · b = 1 where bk =
∫ a

0
Rk dr (3)

144

Backus and Gilbert show that minimizinga · S · a145

with S given by146147

Sik =
∫ a

0
[12RiRk(r − r0)

2 + MiMk + KiKk] dr
148

+
∑

j

AjiAjk (4)

149

results in a resolving kernel of the desired shape. The150

factor of 12 in the above equation is chosen to make151

a · S · a (the “spread”) a measure of the width of the152

resolving kernel. The spread can sometimes have a153

large contribution from the fact that the resoving kernel154

is not well-centered at the target radius—we therefore155

also calculate the “center” of the kernel and the spread156

about the center (called the “width”) following the157

recipe given byBackus and Gilbert (1970).158

When the data have errors, the linear combination159

on the left hand side ofEq. (2) will have an associ-160

ated error. We would also like to choose theak ’s to161

Fig. 1. Theoretical resolution of density in the Earth by the free-oscillation data set for various target error levels. Starting from the top
curve, the target errors are 0.5, 1, 5, and 10%. As an example of how to read this plot, the density at a radius of 2000 km is known to an
error of 0.5% if averaged over a resolving length of about 270 km.

minimize this error since it determines how precise162

our local average will be. Errors on the mode obser-163

vations map to a contributionσ2
av = a ·E · a whereE 164

is the covariance matrix of the observations (usually165

taken to be diagonal). Not surprisingly, the two goals166

of choosing a combination of data which isolates167

information about a property at some target radius168

and having that combination be precise are mutually169

exclusive and we have a trade-off between the two.170

In practice, we minimizea ·M · a subject toa · b = 1 171

with M = S + λE. The solution is 172

a = M−1 · b

b · M−1 · b
(5)

173

The trade-off parameter,λ, is varied until some 174

desired value ofσav is achieved. 175

Figs. 1–3give the width as a function of the center176

of the kernel for various target error levels for density,177

shear velocity, and compressional velocity respec-178

tively. Fig. 4illustrates the resolving kernel for density179

for a targetσav of 0.5%. For compressional and shear180

velocity in the mantle, we can make acceptable resolv-181

ing kernels for target error levels as small as 0.05% but182

this is not true for shear velocity in the inner-core or183

for density anywhere. If we ask for target levels much184

less than 0.5% for density, we typically end up with185

spreads greater than the radius of the Earth. On the186

187
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Fig. 2. Theoretical resolution of shear velocity in the Earth by the free-oscillation data set. The four curves in the inner-core are for target
error levels of 0.5, 1, 5, and 10% (from top to bottom). In the mantle, there are six target error levels of 0.05%, 0.1%, 0.5%, 1%, 5%,
and 10% (from top to bottom).

Fig. 3. Theoretical resolution of compressional velocity in the Earth by the free-oscillation data set. There are six target error levels of
0.05, 0.1, 0.5, 1, 5, and 10% (from top to bottom).

other hand, at 0.5%, density is resolved over widths188

as low as 150 km in the mantle, 250 km in the outer189

core, and about 400 km in the top of the inner-core.190

These results indicate that the free oscillation data191

are capable of saying useful things about density in192

the inner-core and in the lowermost mantle.193

3. A modified analysis 194

The careful reader will note that we have said195

nothing about the actual density inside the earth—196

just about our ability to resolve it. If we wish to use197

Eq. (1)to make quantitative statements about density,198

PEPI 4261 1–9
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Fig. 4. Resolving kernels for density for a target error level of
0.5% and for various target radii. The heavy curve isR while the
light curves (close to zero and not always visible) areM andK.

we have to be sure that certain conditions are ful-199

filled. The primary condition is that the non-linear200

terms neglected inEq. (1) can really be neglected.201

Clearly, this is not true for modes whose frequencies202

have been measured very precisely as even a small203

non-linear term is amplified by error weighting. After204

some experiment, we foundEq. (1) to be satisfactory205

if we force the observational errors to be greater than206

0.05%. In effect, we are degrading the information207

available in the free oscillation data set but we gain the208

ability to do a linear analysis. Even at this level, a few209

mode frequencies can be strong non-linear functions210

of the starting model (this is true of modes whose211

eigenfunctions change from oscillatory to exponential212

behavior close to an internal discontinuity) and such213

modes have been removed from further analysis.214

Another issue is the interpretation of “local215

averages” when the exact shape of the resolving ker-216

nel is not simple. We have found it easiest to make217

resolution kernels which are approximations to box-218

cars between specified radii(r1, r2), which we can 219

achieve if we do not try to maker2 − r1 too small. 220

The local average over the model computed with such221

a kernel can be compared with the true mean of the222

model betweenr1 andr2 and allows us to assess any223

bias. To make boxcar resolving kernels, it suffices to224

replaceS in Eq. (1)by 225

Sik =
∫ a

0
[RiRk + MiMk + KiKk] dr +

∑
j

AjiAjk
226

andb in Eq. (3)by 227

bk =
∫ r2

r1

Rk dr
228

The solution is again given byEq. (5)(see equation 42229

of Masters and Gilbert, 1983). If the data have been230

“ranked and winnowed” following the procedure of231

Gilbert (1971), Sij will just be δij andM = I + λE is 232

diagonal.Eq. (5) is then trivial to solve for a variety233

of λ’s until a desiredσav is achieved. 234

Suppose our minimization is successful in the sense235

thatK,M,Aj are small enough to be neglected, then236

ρ̄e � ρ̄m

(
1 +

∑
k

ak

δωk

ωk

)
(6)

237

where ρ̄m is the model density averaged betweenr1 238

andr2 andρ̄e is our inferred local average for the real239

earth.σav is the relative error on̄ρe. 240

When K,M,Aj, are not exactly zero, these241

terms can be thought of as contributing an addi-242

tional uncertainty in the answer (this was called the243

“contamination” byMasters, 1979). We can make an244

upper estimate of the contamination by choosing max-245

imum allowable perturbations in density and velocity246

as a function of radius (see e.g.,Masters, 1979for 247

somewhat dated bounds) and computing terms such as248

CVp =
∫ a

0
|K|

∣∣∣∣δVp

Vp

∣∣∣∣
max

dr
249

The total contamination in a local average of density250

would then be given by 251

C = [C2
Vp + C2

Vs + C2
h]1/2 (7) 252

The total relative uncertainty on the local average is253

then bounded by [σ2
av + C2]1/2. Having said this, we 254

PEPI 4261 1–9
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will mainly confine attention to those solutions where255

the contamination is much less than the error due to256

observational uncertainty.257

To test the validity of the assumptions behind our258

analysis, we computed a synthetic data set for a model259

with density in the inner-core increased by a rather260

extreme 10%. We were able to construct a resolving261

kernel which was a good approximation to a box car262

in the inner-core providedσav ≥ 1% and recovered263

the correct mean density of the inner-core to within264

the observational uncertainty. Thus, equation (1) with265

data errors forced to be greater than 0.05% is linear266

to perturbations of at least 10%. As an additional test,267

we repeated the analysis to estimate the mean density268

in the inner-core using five different 1D models of269

the earth (1066A, 1066B ofGilbert and Dziewonski,270

1975; PEMA of Dziewonski et al., 1975; isotropic271

PREM of Dziewonski and Anderson, 1981; AK135272

of Montagner and Kennett, 1996). Despite the fact273

that these models fit the data to very different extents,274

the local average that is recovered is always indepen-275

dent of the starting model (within the observational276

uncertainty).277

4. The density jump at the ICB278

To estimate the density jump at the ICB, we con-279

sider two 500 km wide regions centered 250 km above280

and below the ICB.Fig. 5 shows resolving kernels281

for various target error levels for the region below282

the ICB. Clearly, a target of 0.5% leads to a rather283

poor resolving kernel (with significant contamination)284

but a target of 1% or greater gives a well-formed285

resolving kernel with very little contamination. At286

1% error, the local averages for the five different287

models vary between 12.90 and 12.95 Mg m−3 with288

a median of 12.91 Mg m−3. At 2%, the median local289

average for the five models is 13.07 Mg m−3. Both290

of these numbers are slightly higher than the median291

of the model means which is 12.83 Mg m−3. These292

results suggest that the modes prefer a slightly denser293

upper inner-core than usually found in 1D Earth294

models.295

Resolving kernels for the region above the ICB are296

shown inFig. 6. The 1% resolving kernel is not quite297

as flat as we would like but the bias induced by using298

this kernel instead of a true boxcar in estimating means299

Fig. 5. Attempts to make a boxcar resolving kernel for density
in the top 500 km of the inner-core for target error levels of 0.5,
1, and 2% (from bottom to top). The heavy curve isR while
the light curves areM andK. Contamination is significant for
the 0.5% case reflecting the reduced sensitivity of the modes to
structure near the center of the Earth. UsingR in either of the
top two cases to estimate the mean density of the model in this
region (as opposed to a true boxcar) results in an error of less than
0.02%.

is less than 0.05%. The local averages for the five300

models vary between 11.76 and 11.90 Mg m−3 with 301

a median of 11.80 Mg m−3. At 2%, the median local 302

average is 11.71 Mg m−3. Both of these numbers are303

slightly lower than the median of the model means304

which is 12.01 Mg m−3. Apparently, the modes prefer305

a slightly less dense lower outer core than is usual in306

1D models. To check this possibility, we estimate the307

mean density of the whole outer core. We can make308

an extremely good boxcar in the outer core for target309

errors of 0.5% or even less (Fig. 7). We find a mean 310

density of 11.16 ± 0.06 Mg m−3 compared with the 311

models which have a mean density of 11.24 Mg m−3. 312

Apparently, a slight decrease in density for the whole313

outer core is indicated. 314

These small changes have a significant impact on315

our estimate of the density jump at the ICB. For exam-316

PEPI 4261 1–9
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Fig. 6. Attempts to make a boxcar resolving kernel for density in
the bottom 500 km of the outer core for target error levels of 0.5,
1, and 2% (from bottom to top). The heavy curve isR while the
light curves areM andK. Contamination is not totally negligible
for the 0.5% case. UsingR in either of the top two cases to
estimate the mean density of the model in this region (as opposed
to a true boxcar) results in an error of less than 0.04%.

ple, the difference between the mean densities above317

and below the ICB in the starting models is on average318

0.84 Mg m−3 of which 0.57 Mg m−3 comes from the319

density jump at the ICB and the other 0.27 Mg m−3320

comes from compression effects (since we are deal-321

ing with means centered 250 km from the ICB). The322

compression contribution of 0.27 Mg m−3 agrees well323

with an estimate using the Adams–Williamson equa-324

tion. On the other hand, the difference in the inferred325

local averages is 1.09± 0.18 Mg m−3 which leads to326

an inference of an inner core density jump of 0.82±327

0.18 Mg m−3 (assuming a compression contribution of328

0.27 Mg m−3). The density jump due to solidification329

alone can be estimated to be about 0.21 Mg m−3 (Alfe330

et al., 2000; Gubbins et al., in press); so our new es-331

timate increases the compositional part of the density332

jump from 0.36 to 0.62 Mg m−3. The consequences of333

this for the thermal history of the core will be consid-334

ered elsewhere.

Fig. 7. Attempts to make a boxcar resolving kernel for density
in the whole outer core for target error levels of 0.3, 0.5, and
1% (from bottom to top). The heavy curve isR while the light
curves areM andK. UsingR in any of these cases to estimate
the mean density of the model in the outer core (as opposed to a
true boxcar) results in an error of less than 0.02%.

5. The density near the base of the mantle 335

We now consider the bottom 500 km of the lower336

mantle. It should be noted that the models by and337

large closely follow the Adams–Williamson condi-338

tion and show no signs of an unusual density in-339

crease near the base of the mantle. The exception340

is model AK135 which was constructed in an un-341

usual way and has enhanced density in the bottom342

150 km of the lower mantle. While it is true that343

this model provides by far the poorest fit to the344

mode data, it is still within the range of linearity345

since the local averages predicted using this model346

agree well with local averages predicted using other347

models. 348

The resolving kernels for various target error lev-349

els are shown inFig. 8. Clearly, well-shaped kernels350

are available for all target levels above 0.5%. The351

median of the local averages for density at either352

the 0.5% or 1% level is 5.465 Mg m−3 and is known 353

PEPI 4261 1–9
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Fig. 8. Attempts to make a boxcar resolving kernel for density
in the bottom 500 km of the lower mantle for target error levels
of 0.3, 0.5, and 1% (from bottom to top). The heavy curve isR
while the light curves areM andK. Contamination is not totally
negligible for the 0.3% case. UsingR in either of the top two
cases to estimate the mean density of the model in this region (as
opposed to a true boxcar) results in an error of less than 0.05%.

to ±0.027 Mg m−3. The median of the models is354

5.447 Mg m−3 (though values range from 5.433 to355

5.476 Mg m−3. These results imply that the bottom356

500 km of the lower mantle may be about 0.4% more357

dense than the models though this difference is within358

the observational uncertainties.359

We also computed resolving kernels for the mean360

density of the whole lower mantle (extending from361

the 660 km discontinuity to the core–mantle bound-362

ary). Not surprisingly, this can be done very accurately363

and we got good resolving kernels for target error lev-364

els of 0.3% (Fig. 9) leading to an estimate of mean365

lower mantle density of 4.996±0.015 Mg m−3 as com-366

pared to the models which had mean densities vary-367

ing between 4.982 and 4.996 Mg m−3 with a median368

of 4.987 Mg m−3. This result implies that the whole369

lower mantle could be slightly denser than the models370

so the value of excess density in the lowermost mantle371

is likely to be less than 0.4%.372

Fig. 9. Attempts to make a boxcar resolving kernel for density in
the whole lower mantle (extending from the 660 km discontinuity
to the core–mantle boundary) for target error levels of 0.3, 0.5,
and 1% (from bottom to top). The heavy curve isR while the
light curves areM and K. Using R in any of these cases to
estimate the mean density of the model in the lower mantle (as
opposed to a true boxcar) results in an error of less than 0.03%.

We believe these numbers put strong constraints on373

the likely viability of a “hot abyssal layer”. InKellogg 374

et al. (1999), a density constrast of 1% was cited after375

competing compositional and thermal effects were376

taken into account. Our results indicate that this may377

be too large by a factor of more than two. It should378

be remembered that this result was obtained for379

the degraded data set—non-linear inversions of the380

complete mode dataset should put even tighter con-381

straints on possible excess density in the lowermost382

mantle. 383

6. Conclusions 384

We believe the results of this paper show that free385

oscillation degenerate frequencies are capable of con-386

straining density in the Earth to a useful precision.387

The results of a linear analysis (with the errors on the388

PEPI 4261 1–9
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mode frequencies degraded to ensure linearity) give389

a new estimate of the density jump at the ICB of390

0.82±0.18 Mg m−3, which is significantly larger than391

the value used in previous calculations of the ther-392

mal history of the Earth’s core. We also find that if,393

on average, the bottom 500 km of the lower mantle394

were acting as a “hot abyssal layer”, its density excess395

would have to be less than 0.4%, which is about the396

observational uncertainty we have on density in this397

region. Whether such a layer would be dynamically398

stable remains to be seen.399
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