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Previous work has studied the ability of lateral surface temperature variations to lock,
or otherwise control, fluid flow in rotating spherical shells. In physical systems such as
the Earth’s core, a fixed heat-flux applies to the outer boundary and we study the effect
of applying large scale lateral heat-flux heterogeneities. For uniform heat-flux, thermal
onset occurs at a critical Rayleigh number, R., with flow of a characteristic wavenum-
ber, m.. The fixed-flux boundary condition favours large scale (m. = 1) flows to lower
Ekman numbers, F/, than the fixed temperature condition. m. = 1 flows are preferred
to lower E for high Prandtl numbers, P, and rigid boundaries. We present a nonlinear
drifting solution to the uniform heat-flux boundary problem which shows a longitudinal
asymmetry: one hemisphere displays large scale toroidal flow whilst the opposite hemi-
sphere displays smaller scale thermal convection. We then change the boundary heat-flux
to vary laterally as the spherical harmonic Y.2(6, ¢), with strength measured by €. Flow

now occurs for all non-zero Rayleigh numbers, R, and is steady for R < R.. We look at
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time-dependent convection with R > R, for two sets of parameters which prefer different
forms of convection at onset. At P, = 0.6, both thermal convection and boundary-driven
flow display m = 2 symmetry and, for low ¢, periodic flows of the same symmetry are ob-
served. At higher ¢, the symmetry is broken as odd m are excited. For P, = 6.0, m = 1 is
preferred for uniform heat-flux and, for low ¢, m = 1 and m = 2 modes compete. Higher

¢ suppresses the m = 1 mode and an m = 2 symmetry 1s imposed by the boundary.

1. Introduction

The Earth’s fluid outer core is surrounded by a viscous mantle which convects on a far
longer time-scale. The thermal structure of the lower-most mantle will persist for great
lengths of time, over which the relatively rapid motion of molten iron in the core will act
to maintain an isothermal core-mantle boundary (CMB). Convection in the mantle is
therefore subjected to a uniform temperature boundary condition at the CMB and core
fluid will experience a constant heat-flux at the same interface. Mantle convection will
lead to (possibly large) lateral temperature variations within the thermal boundary layer
directly above the CMB. This will result in lateral heat-flux inhomogeneity at the CMB
with consequences for the outer-core flow and magnetic field morphology (Gubbins &
Richards 1986; Bloxham & Gubbins 1987). Long term mantle control over core processes
is indicated by persistent non-axisymmetric features in the historical (Bloxham, Gubbins
& Jackson 1989; Hutcheson & Gubbins 1990) and paleomagnetic (Gubbins & Kelly 1993,;
Johnson & Constable 1995) records. In principle, the spatial structure of temperature
variations in the lower-most mantle can be determined from lateral seismic velocity vari-
ations, with secondary or S-wave velocities likely to be the best indicator (Karato 1993;
Stacey 1995, 1998). Relatively low (high) S-wave velocity is likely to correspond to rel-

atively high (low) temperature. Long wavelength heterogeneities are likely to dominate
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(see, for example, Su & Dziewonski 1991; Masters et al. 1996) and the shear-velocity
models of Masters et al. (1996) and others (reviewed by Masters & Shearer 1995) indicate
that the largest component of the S-wave variation is a Y;2(6, ¢) spherical harmonic (see
§2 for definition).

Thermally driven convection of fluid in rotating spheres and spherical shells is funda-
mental to the fluid dynamical systems which generate the magnetic fields of the Earth
and other planetary bodies. Numerous studies address the onset of thermal instabil-
ity (Chandrasekhar 1961; Roberts 1968; Busse 1970; Zhang & Busse 1987; Yano 1992;
Zhang & Jones 1993; Ardes, Busse & Wicht 1997; Jones, Soward & Mussa 2000) and fi-
nite amplitude convection (Zhang 1991, 1992; Sun, Schubert & Glatzmaier 1993; Tilgner
& Busse 1997) in spherical geometry. All of these studies assume the boundary to be a
perfect thermal conductor, and so fix a uniform temperature at the outer surface. Zhang
& Gubbins (1993) demonstrated how, in the absence of a magnetic field, relatively small
variations in the temperature imposed at the outer surface can lock the convection rolls
to the surface heterogeneity. For other parameters, the resulting flow was found to vascil-
late between length scales fixed by the boundary temperature and those preferred by the
uniform-boundary convection. Inertia was found, by Zhang & Gubbins (1996), to lessen
the ability of the boundary to lock flow. For numerical simplicity, these studies fixed the
temperature and not the heat-flux at the outer boundary.

However, several studies (Dormy 1997; Gibbons 1998; Takehiro et al. 1999) have es-
tablished examples of systems where fixing the heat-flux, as opposed to the temperature,
leads to very different behaviour at onset of thermal instability. For rotation rates which,
given fixed temperature boundaries, would lead to marginally stable convection in the
form of many small length-scale drifting cells, the fixed flux boundary condition favours

large scale flows with a single upwelling and downwelling. It may therefore transpire that
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the effect on convective instability of a non-uniform heat-flux may be somewhat different
to that of a heterogeneous temperature boundary. This paper addresses this problem.

Inhomogeneous cooling at the outer surface of rotating spherical fluid shells has been
the subject of several further numerical investigations. Sun, Schubert & Glatzmaier
(1994) applied different patterns of lateral temperature heterogeneities to highly su-
percritical thermal convection. Lateral variations in the outer-boundary heat-flux have
been applied in the contexts of magnetoconvection (Olson & Glatzmaier 1996) and self-
consistent dynamo simulations (Glatzmaier & Roberts 1997; Sarson, Jones & Longbot-
tom 1997; Bloxham 2000). The systems in all of these studies are strongly nonlinear and
time-dependent and the numerical simulations are correspondingly expensive. As a re-
sult, a very limited range of parameters can be explored. Examining the behaviour close
to onset allows the fundamental effect of changing the thermal boundary condition to be
understood over a wide range of parameters.

Before performing calculations with heterogeneous cooling, we determine the onset
thermal instability for the uniform heat-flux problem. The effect of changing the outer
boundary condition from fixed temperature to fixed heat-flux was explored by Gibbons
(1998) who examined the onset of convection, for both boundary conditions, in spherical
shells of different radius ratio, at infinite Prandtl number and with uniform heat sources
throughout the shell. Dormy (1997) compared the onset of convection in systems with
uniform heat sources and fixed temperature outer boundary to those with no internal
heating and fixed heat-flux at the outer boundary, all at P, = 1. Takehiro et al. (1999)
briefly examined onset of convection in spherical geometry in a study which primarily
addressed the effect of fixed-flux boundaries on thermal instability in a rotating cylin-
drical annulus. In §3, we illustrate and expand upon the principal results of these three

studies.
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In §4, we solve the nonlinear problem with uniform heat-flux at the outer boundary.
We then apply a lateral variation in the outer-surface heat-flux and solve for steady
flows (§5). We test the validity of all such boundary-locked solutions with linear stability
analysis. In §6, where we find that the steady solutions are unstable, we solve the full

equations with a time-step code.

2. Mathematical and numerical formulation

In the following treatment, r, § and ¢ denote the standard spherical polar coordinates
and 7 1s the position vector. A spherical fluid shell rotates with a constant angular
velocity, Q, and has inner and outer radii r; and r, respectively. Gravity within the shell

is given by

g=—"r, (2.1)
where 7 1s a constant. The thermal expansivity, a, thermal diffusivity, &, and viscosity,
v, are all constant throughout the shell. A basic state temperature, T, is maintained by

a uniform distribution of heat sources such that
VTs = —pr, (2.2)

for constant § (see for example Roberts 1968; Busse 1970). The velocity, v = (v,, vg, vy),
and temperature perturbation from 7y, denoted by 7', are related by the Navier-Stokes

equation

<% + v.V) v+20k x v =-Vp+ayTr + vV (2.3)

and the heat equation

% +v.VT = kV?T 4 po.r, (2.4)
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where k is a unit vector aligned with the rotation axis. The term Vp is the force due to
the pressure gradient and is removed from the problem by taking the curl of Equation
(2.3).

Scaling length by d = r,—r;, time by d?/& (the thermal diffusion time) and temperature

by d?/j3 respectively allows equations (2.3) and (2.4) to be written in the dimensionless

forms
—1 a -1 ~ 2
P, a%—v.v v+ FE "kxv=-Vp+ RTr 4+ Vv (2.5)
and
T
63—t+v.VT: VAT + v.r. (2.6)

The problem is now controlled by the Prandtl number, P, the Rayleigh number, R, and

the Ekman number, F, given respectively by

P.=—- R= ,and £ = —. (2.7)

The aspect ratio n = r;/r, is set to 0.4 in the majority of calculations, being close to the
value for Earth (ng = 0.351) and allowing direct comparisons with previous work. In the

Boussinesq approximation, v is divergence free,
V.o =0, (2.8)
and so the velocity field can be expanded in toroidal and poloidal vectors;
v=Vx(w(rbe)r)+VxVx(vrdodr). (2.9)
The impenetrable condition at the boundaries requires that
v(r) = v(r,) = 0. (2.10)

The additional constraints on the velocity are

=5 (%)

Ti,To

8%

5 -0 (2.11)

Ti,To
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for the case of stress-free boundaries and

= =0 (2.12)

Ti,To

= w

TiTo

when the boundaries are rigid. Imposing a thermal heterogeneity at the outer surface

means imposing either

T(ro,0,¢0) = Tyg(0,¢), (2.13)
for fixed temperature, or
ore,¢)| _ .

To

for fixed heat-flux. In this paper we fix the heat-flux, —9T'/dr, for most of the calcula-
tions, and fix the temperature, T, for a few comparison solutions and to benchmark the
numerical code against the results of Zhang & Gubbins (1993, 1996). The most straight-
forward way to implement this is to decompose the temperature, T, into a homogeneous

part, ©, and a fixed inhomogeneous part, fg, with
T=0(r0,¢,t)+cf(r)g(0, o). (2.15)
The heterogeneity function g(é, ¢) is normalised with the condition
2w T
/ / [9(0,8)?] sin6dfd¢ = 1 (2.16)
0 -

and has a zero spherical average. In the fixed heat-flux calculation, the strength of the

lateral heat-flux variation relative to the mean radial heat-flux is controlled by ¢ with

A
=—. 2.17
The corresponding parameter in the fixed temperature calculation is given by
T .
er = Bdz (2.18)
For calculations with fixed heat-flux at the outer boundary,
00 df
= = 2 =—1 2.1
or |, 0 dr,. (2.19)
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and, for fixed T,

O(ro) =0, f(ro) = 1. (2.20)
The temperature is fixed and uniform at the inner boundary in all cases;
O(ri) =0, f(r)=0. (2.21)

The scalar functions g(6, ¢), ©(r, 0, ¢), w(r, 0, ¢) and v(r, 8, ¢) are expanded in series of

spherical harmonics, truncated at degree { = L,

[
M=
MN

g(0,¢) [977¢ cosm¢ + g** sinmg] P™(cos ) (2.22)
=1 m=0
L1 l
O(r,0,¢) = Z Z [©"(r) cosme + O] (r) sin m@] P" (cos ) (2.23)
=0 m=0
L0 l
w(r,0,¢) = Z Z [w](r) cos m¢ + w™* (r) sin me] P (cos §) (2.24)
=1 m=0
L1 l
v(r,0,¢) = Z Z [v]¢(r) cos m¢ + v** (r) sin m¢] P™ (cos ) (2.25)

1

3
1l
=)

where the associated Legendre functions, P/”*(cos ), are Schmidt quasi-normalised with

/ [P (cos 0)] sin 6d9 = W (2.26)

Ky

The spherical harmonics Y;”*¢ and Y;”** are respectively defined by
Y7™(6,6) = P™(cos 0) cos(mo) (2.27)
and
Y™ (6,8) = P"(cos ) sin(mg). (2.29)
At the onset of convection, with € = 0, the nonlinear terms in equations (2.5) and (2.6)

are neglected and modes decouple in m, although the Coriolis force still couples terms

in . In addition, the equatorially symmetric (E¥) components with

(vr,va,04) (7,0, ¢) = (vp, —ve, v4)(r, T — 0, 0) (2.29)
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and the equatorially anti-symmetric (E4) components with

(vr,ve,04) (7,8, 0) = (—vr,ve, —vg)(r,m— 0, P) (2.30)

can be treated separately. Busse (1970) showed the E components to be the physically
realised solutions and so only they are dealt with here.
The functions ©, v and w are treated as perturbations with exponential time-dependence

0/0t = o = o, + i0;. The resulting eigenproblem,

P7'V xov=—FE"'V x (kxv)+ RV x0r+V x Vv (2.31)

00 = V?0 +v.r, (2.32)

subject to the formulation of equations (2.23) to (2.25), forms a set of coupled ordinary
differential equations in r.

The radial functions for ©, v and w are represented at N arbitrarily spaced grid
nodes and derivatives are calculated by finite difference methods. Positioning the grid
nodes at the zeros of the Chebyshev polynomial Ty, scaled over the interval (rj,ro),
was found to give far better accuracy for computational cost than the same number
of equally spaced nodes. This non-equidistant grid spacing has more nodes concentrated
close to the boundaries, where there is the greatest need for good resolution. When stress-
free boundaries are used, the frame of reference in which solid body rotations vanish is
employed.

At the onset of thermal instability the perturbations do not decay and ¢, = 0, the
corresponding value of R called the critical Rayleigh number, R.. The mode m possessing
the lowest value of R. is called the critical wavenumber, m.. It must be verified that
every R. calculated is essentially independent of the numerical resolution, controlled
by the integer parameters L and N. Table 1 shows how the critical Rayleigh numbers

for selected m vary with numerical resolution at the switchover between m, = 1 and
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m, = 11 for rigid boundaries, infinite Prandtl number and E ~ 1.4 x 10~*. If the

numerical resolution is insufficient, the wrong critical wavenumber, m,, is chosen.

The eigenvalues, o, to the eigensystem in equations (2.31) and (2.32) are found using
the implicitly restarted Arnoldi method (Lehoucq, Sorensen & Yang 1998; Arnoldi 1951;
Sorensen 1992). This method returns several eigenvalues and can utilise the banded struc-
ture of the matrix which results from the short-range interactions of the finite difference
method for radial derivatives.

When ¢ is non-zero there is no critical regime. For any non-zero Rayleigh number,
a flow will be forced by the lateral variation in heat-flux (see Zhang & Gubbins 1992;
Gibbons & Gubbins 2000). At sub-critical R, in the absence of convective instability, this
flow is likely to be steady and we may solve for a nonlinear solution to equations (2.5) and
(2.6) with 9/0t = 0 by Newton-Raphson iteration. As a result of the nonlinear terms, the
spherical harmonics no longer decouple in m. Therefore, despite the banded structure of
the Jacobian matrix which results from the finite difference scheme for radial derivatives,
the memory requirements for these calculations rapidly increase with L. For regions of
parameter space where the Newton-Raphson method is impractical, it is more efficient
to use a time-stepping code to converge towards a steady solution when a non-uniform
boundary temperature or heat-flux is imposed. The time-stepping and Newton-Raphson
codes were written independently and the use of both codes provides a useful check on
the validity of the solutions obtained.

The validity of any such steady solution, (vg,©g), must be determined by a linear

stability analysis. The steady solution is subjected to a perturbation, (v, (:)), with

v=wvg+ v (2.33)
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and
©0=0,+6. (2.34)
An exponential time dependence of the form §/0¢ = ¢ is assumed for ¥ and 0, resulting
in the eigenvalue problem
oP7IVxv = —P7IVWx|[(v0.V)o+ (9.V)vg]
—E71V x (k x 8) + RV x (Or) + V x Vo (2.35)
00 = b1 —v9.VO—5.V(0y +cfg) + V0.
The eigenvalue ¢ = o, + 0} is, in general, complex and an eigenvalue with real part
oy < 0 indicates that the steady solution is stable to perturbation and the steady solution
is valid. An eigenvalue with o > 0 indicates that the perturbation will grow; and the
solution is therefore unstable. A full time integration is then needed to follow the evolution
of the flow and temperature. A linearized time-stepping code can be used to calculate
growth rates of perturbations if the memory requirements are too great for the eigenvalue
problem to be practical. Again, the linear stability code provides good validation for the
time-dependent code.
We have high confidence in the validity of the uniform thermal boundary solutions as
a result of the excellent agreement between the present time-stepping code and several
other independently developed codes in the convection and dynamo benchmark study
of Christensen et al. (2000). The non-uniform boundary code has only minor modifica-
tions from the benchmarked code. A semi-implicit Crank-Nicolson scheme was used to
time-step the diffusive terms in the heat and momentum equations. The velocity, v, the
vorticity, V x v, and temperature gradient, VT, are transformed into (r,8, ¢)-space at
each time step, using a Fast Fourier Transform in the ¢ direction and alias-free Gaussian
quadrature in the € direction. The nonlinear terms are evaluated in real space and a

predictor-corrector iterative method is used to solve for v and © at the next time-step.
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3. Onset of thermal convection with uniform heat-flux at the outer
boundary

With fixed temperature boundaries and infinite Prandt]l number, the critical wavenum-
ber increases with rotation speed. For rigid boundaries, the increase in m, is monotonic.
In the case of stress-free boundaries, there 1s an anomalous switchover from m, = 8
to m. = 7 at E = 1073 (see table 2 for details). This discrepancy aside, the observed
increase is similar to that reported throughout the literature. At high rotation speeds,
the Coriolis force dominates and the flow attempts to align with the rotation axis in
order to satisfy the Proudman-Taylor theorem. Due to the curvature of the boundaries,
Jv/dz (where z = rcosfl) can never entirely vanish and the rotational constraint must
be broken by the viscous effect. This is achieved by reducing the horizontal length scale
of the flow.

Figure 1 shows critical Rayleigh numbers for several m in the fixed heat-flux, infi-
nite Prandtl number case with stress-free boundaries. The fixed-flux boundary condition
promotes instability of the m = 1 mode at far lower values of E than is found for
fixed temperature boundaries. The mode possessing the lowest critical Rayleigh number
varies with F in a similar way to that reported in previous works (for example Zhang &
Busse 1987) with the exception of the m = 1 mode. To cast light upon the anomalous
preference for m = 1 with fixed flux, we examine streamlines of flow and temperature
contours, in the equatorial plane, for m = 1 and m = 4 at onset (figure 2). We note that
m = 4 is the preferred wavenumber for convection at £ = 1072 for the fixed temperature
outer boundary condition. In the fixed heat-flux system, the temperature at the outer
boundary is constrained only by the geometry of the system and the preferred mode of
convection maintains a lateral temperature gradient which penetrates deep into the shell,

facilitating a very large scale flow for optimal heat transport. Under the alternative fixed
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T boundary condition, these lateral temperature gradients would vanish at the bound-
ary and this large scale flow would be inhibited by the effects of rotation. For larger
wavenumbers (e.g. m = 4), the smaller ratio of lateral to vertical length scale means that
the effect of the thermal boundary condition is diminished, which explains the pattern
observed for higher m in figure 1. At E = 1073, in the lower part of figure 2, the rotation
effects have become dominant and the strongest lateral temperature gradients have been
driven deeper into the shell. The streamlines of flow now tend to follow, and not cross,
the contours of constant temperature and the m = 1 mode no longer offers the most
effective heat transport.

At Ekman numbers lower than those shown in figure 1, the relationship between m,
and E is very similar to that for fixed temperature and the importance of the thermal
boundary condition diminishes. Figure 3 shows almost no difference between the form of
flow in the preferred mode at E = 3.162 x 10~* for the two boundary conditions, flow
being concentrated towards the inner region of the shell.

The behaviour is even more surprising for rigid boundaries, with the large length-
scale flow preferred for Ekman numbers as low as £ = 1.4 x 10~*. The preferred mode
changes from m, = 3 to m, = 2 at E ~ 5 x 1073 and again from m, = 2 to m, = 1
at £ ~ 1.05 x 1073. At lower E, m = 1 is replaced with the far smaller length-scale
m = 11 flow as the preferred mode. (The numerical convergence of the solutions on
either side of this transition is demonstrated in table 1.) Because of the wide range of F
over which the anomalous behaviour of critical mode selection occurs, the corresponding
range of R, is very large and plotting R, against F for the individual wavenumbers (as
in figure 1) would show little detail of the switchovers. Roberts (1968) showed that R,

4/3

would be proportional to E~ in the limit of small Ekman number, and so figure 4

shows the critical Rayleigh numbers for selected wavenumbers scaled by E4/3 against F.
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Figure 5 indicates how, at £ = 1072, both the m = 1 and m = 2 modes exhibit large

lateral temperature variations which penetrate deep into the shell. However, the larger
scale m = 1 flows are required (by the geometry of the = 0.4 spherical shell) to have
proportionately more contact with the flow-inhibiting rigid boundaries than the m = 2
convecting cells, favouring the latter. (Gibbons 1998, shows that for the deeper n = 0.2
shell, the m = 1 mode meets less resistance from the boundaries and is consequently
preferred at these rotation rates.) For E = 3.152 x 10™%, the m = 2 mode is inhibited
as the greater influence of the Coriolis force has driven the lateral temperature gradients
deeper into the shell (lower part of figure 5). The larger scale m = 1 flow is less effective
at breaking up the lateral temperature gradients close to the boundaries than the smaller
convective cells and is once more the preferred mode of heat transport.

Having established the result for infinite Prandtl number, it is necessary to explore
the extent of 1ts validity for finite P.. At small P,, inertial effects dominate over thermal
and the behaviour of T" at the boundaries would be expected to be less significant. The
study of Dormy (1997) also found the m = 1 mode to be preferred at moderate Ekman
number (E = 3.1623 x 10~%) in a system with no internal heat sources, n = 0.35 and
P, = 1. This suggests that the thermal boundary condition is of greater importance than
the mode of heating for the selection of a critical mode in this parameter regime.

Critical wavenumbers and Rayleigh numbers were sought for finite P, over the ranges
1073/2 > E > 2x 10™* (stress-free boundaries) and 10=%/2 > E > 7x 107 (rigid bound-
aries). At Ekman numbers lower than these limits, no preference for large length-scale
flows had been found and it can be expected that the R, and m, will follow asymptotic
behaviour as a function of F (see, for example, Zhang 1991). For P, = 10, the behaviour
is very similar to the infinite Prandtl number case and it was deemed unnecessary to

consider finite P, greater than 10. Figure 6 illustrates how the critical wavenumber, m.,
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varies as a function of P, and F for both stress-free and rigid boundaries. The sketch is
based on 17 different P, values with P, > 0.1 and each subsequent value being a factor
10'/8 greater than the previous. This inevitably means that some degree of interpolation
has been employed to construct the lines. With some features, however, such as the mul-
tiple crossovers between wavenumbers 5 and 6 for stress-free boundaries, or the sudden
changes from small to large m., special care was taken to ensure that boundaries were
numerically well-resolved.

The m = 1 mode is preferred over a far greater range of F for rigid boundaries than for
stress-free as the rigid boundaries inhibit flow near to the surface, which acts to produce
a more uniform boundary temperature. At lower Prandtl number, the range of E over
which the large length-scale flows are preferred is smaller for both stress-free and rigid

boundary systems.

4. Finite amplitude convection with uniform heat-flux imposed at
the outer boundary.

Reinstating the nonlinear terms into the Navier-Stokes and heat equations allows us
to solve for time-dependent solutions at super-critical Rayleigh numbers. Wavenumbers
do not decouple and we investigate the interaction of the large length scale (m = 1)
flow, preferred by the uniform heat-flux boundary, with the smaller scale cells, which
are preferred at larger Rayleigh numbers. With parameters where m = 1 instabilities
are preferred (see figure 6) the nonlinear solutions are predictably dominated by m = 1
components, when the Rayleigh number is not greatly above critical. Other wavenumbers
add small contributions to the flow by virtue of the nonlinear interactions.

Increasing R will excite higher wavenumbers. Figure 7 displays a solution with £ =

2.8 x 1073, P. = 10, R = 4900 and stress-free boundaries. The kinetic energy in the
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flow stays constant and the only time-dependence (figure 7 a) is a steady prograde drift

in longitude. The solution repeats itself every 1.251 thermal diffusion times. Although
the picture is somewhat complicated by the appearance of several small scale convection
cells in some regions of the shell, figure 7 (¢) shows that, fundamentally, one hemisphere
has above average temperature at the equator whilst the temperature of the opposite
hemisphere is below average; consistent with a dominant m = 1 component. In figure 7
(d), a large length scale toroidal flow is moving retrograde relative to the drifting frame
from the region of greatest temperature to that of lowest temperature. The contours
for v, (figure 7 ¢) show that the region occupied by this westward flow contains almost
no radial velocity, the remaining region of the sphere containing convection rolls with a
length scale consistent with an m = 4 or m = 5 flow. In the small scale convective region,
vy 1s positive (eastward). The hemispherical asymmetry of this solution is most clearly
seen in figure 7 (b).

In other regions of parameter space, where the most unstable wavenumber is m = 1
and where the second most unstable mode has a much larger m, steadily-drifting so-
lutions were obtained which showed similar characteristics to the solution displayed in
figure 7. The preferred mode has a large horizontal length-scale but, at higher R, convec-
tion with a much smaller length-scale is excited which co-exists in nonlinear interaction
with the underlying m = 1 flow. The resulting system has an ‘East-West’ hemispherical
asymmetry.

At higher values of R, the effects of the large scale flow are still seen although the
simple time-dependence, which allows us to examine the effect of the fixed-flux boundary

condition so closely, is lost.
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5. Solutions locked by a heat-flux inhomogeneity at the outer
boundary

We now study the effect of imposing a Y lateral heat-flux variation at the outer
surface. We investigate two regions of parameter space with a moderate Ekman number,
E = 5x1073, where the velocity satisfies stress-free boundary conditions. For the uniform
(e = 0) heat-flux problem, m = 2 and m = 1 are the most unstable wavenumbers for
Prandtl numbers 0.6 and 6.0 respectively (see figure 6). Table 3 shows critical Rayleigh
numbers for equatorially symmetric modes m = 1 to m = 6 for these values.

In the absence of unstable thermal convection, a pattern of lateral cooling, ¢(6, ¢),

forces a flow (wg) and temperature distribution (Gg). Since g(f, ¢) satisfies

9(0,6) =g(0, 7+ ¢), (5.1)

the expansions which represent the solution, (vg, ©g), need only contain wavenumbers,
m, which satisfy m = 2n, for non-negative integers n (see Gubbins & Zhang 1993, for
details on the symmetry properties of equations 2.3 and 2.4). This forced convection is
a thermal wind type flow and exists for any non-zero Rayleigh number and non-zero
€. In the absence of a critical regime for the onset of flow in the non-uniform heat-
flux boundary problem, we continue to refer to the critical Rayleigh number, R., as
the Rayleigh number necessary for the onset of thermal instability with a uniform-flux
boundary. Figure 8 shows a typical steady flow at sub-critical Rayleigh number, driven
by the thermal heterogeneity on the boundary. Upwelling occurs not under the warmest
part of the boundary (as would be expected in a non-rotating system) but where, moving
in the direction of rotation, the outward heat-flux changes from below average to above

average. In the absence of convection heated from below, this would appear to be the
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how the boundary-driven flow will behave as the Ekman number decreases Gibbons &
Gubbins (2000).

Provided the Rayleigh number stays subcritical, the form of the forced convection does
not change greatly as a function of €, R and P,. The kinetic energy of the flow, however,
increases strongly with both R and ¢. Using a Y;* spherical harmonic lateral variation of
surface temperature, Zhang & Gubbins (1993) found two temperature layers to form as
R was increased. This was due to the emergence of convection rolls with the same lateral
length scale as the imposed thermal heterogeneity. Such a phenomenon was not observed
here, probably due to the much larger length scale ratio of the surface heating anomaly
to the depth of the shell for the Y2 harmonic.

We must now consider the stability of the boundary driven flows. As a result of the
symmetry of the steady flow, two classes of perturbation, (f;,(:)), may be considered
separately. They are characterised by the Floquet integers M = 0 and M = 1, containing
only wavenumbers, m, with m = 2j + M (see Zhang & Gubbins 1993) where j are
non-negative integers. Figure 9 shows the lines of critical stability for both classes of
perturbation for P, = 0.6 and P, = 6.0. For a given ¢, R;(M) is defined as the lowest
value of R for which a perturbation of class M achieves a growth rate with a zero real
part. The minimum value of R,(0) and R,(1) is simply denoted R;. The steady solution,
(vo,Og), is valid only for R < R; or, alternatively, the points in figures 9 (a) and 9 (b)
which lie to the left of both of these lines.

For both cases studied, the strength of the boundary heating heterogeneity needs to be
quite large before the flow is boundary-locked at Rayleigh numbers significantly above
critical. For low ¢ and P, = 0.6 (figure 9 a), the stability boundary is controlled by the
M = 0 class of perturbations which contain only even m. However, as € is increased,

far higher Rayleigh numbers are required to destabilise the locked flow to the M = 0
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perturbations. The effect of increasing the strength of the Y32 boundary heating has

a lesser effect on the stability to M = 1 perturbations and, paradoxically, increasing
the strength of a cos2¢ mode leads to the solution becoming unstable to a class of
perturbations containing only odd wavenumbers.

In the P, = 6.0 case (figure 9 b), the m = 1 mode is far more unstable than the larger
wavenumbers in the uniform boundary problem and, predictably, the Y.>-locked solution
becomes unstable to M = 1 class perturbations for moderate values of €. The ability of
the surface heat-flux variation to lock the flow increases substantially with e. At € & 0.54,
a different mode of instability, belonging to the M = 0 class of perturbations, takes over.
At this point, the symmetry imposed by the surface heating takes precendence over the
symmetry preferred by the heterogeneously cooled system.

For all parameters examined, the eigenvalues corresponding to the perturbation growth
rates had non-zero imaginary part. Beyond the stability boundary, R = R;, the time-
derivatives in equations (2.5) and (2.6) cannot be omitted and the nonlinear solutions

must be solved by a time-stepping procedure.

6. Time-dependent flows subject to a laterally varying heat-flux at
the outer boundary

Figure 9(a) shows that, for P, = 0.6 and the other parameters described in §5, ¢ =
0.30 is almost the largest lateral heat-flux variation for which the stability boundary is
controlled by the M = 0 class of perturbation. R = 1200 is approximately 5% beyond
the R, stability boundary for P, = 0.6, E = 5 x 1073 and ¢ = 0.30 for stress-free
fluid boundaries. We note that for ¢ = 0 and R = 1200, the finite amplitude solution
drifts steadily prograde with most kinetic energy in the wavenumber m = 2, but with

other even m contain small components due to nonlinear interactions. Time-stepping with
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€ = 0.30, from an initial condition containing the boundary-driven solution and additional
perturbations of all symmetries, leads to a periodic flow containing only components with
m even. However large the initial perturbations with odd m, they will ultimately decay
given a sufficiently long integration time.

Figure 10 shows the variation of kinetic energy of flow components throughout one half-
cycle. After an initial energy maximum, where the solution resembles the predominantly
boundary-driven flow in figure 8, the system attempts to propagate in the direction of
rotation. In both the drifting (¢ = 0) and steady thermal-wind (non-zero €) solutions, the
flow and temperature distribution maintain a constant phase relationship. In this time-
dependent system, this relationship is made impossible by the propagation of the flow
relative to the boundary heat-flux variation. The kinetic energy begins to diminish and
the isotherms distort (figure 10 a), with the large upwelling then splitting into two (figure
10 b). The kinetic energy of the dominant m = 2 component decreases dramatically
(almost two orders of magnitude) until it is dominated by the m = 4 mode, which is
less suppressed as a result of its smaller horizontal length scale. Figure 10 (c) shows
the emergence of these smaller convection cells despite the clear larger length scale of
the temperature variations. The small scale cells are able to propagate past the surface
heat-flux heterogeneity more readily and the large scale flow reforms (figure 10 d) in the
same flow-temperature phase observed at the previous kinetic energy maximum. Large
length scale thermal forcing for parameters which, given uniform thermal boundaries,
would naturally prefer large scale flows have resulted in a solution which alternates
between large and small length scales depending upon the phase between the boundary
heterogeneity and the convection rolls.

With € = 0.4, and otherwise the same parameters, figure 9 (a) shows that the stability

of the Y2 boundary-driven flow is now determined by the M = 1 class of perturbations.
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Figure 11 shows variation of the kinetic energy with time for the integration of the full
nonlinear equations. Although some regular fluctuation occurs, it is within a few percent
of a time-averaged value and not the two orders of magnitude variation observed for the
weaker € = 0.3 case. The strong cos 2¢ heating mode keeps the solution dominated by
the m = 2 wavenumber, although components with m odd do not decay with time. The
m = 3 flow components consistently maintain approximately one order of magnitude less
kinetic energy than the m = 2 components, although this additional symmetry-breaking
element of the flow clearly facilitates the drift of the solution past the surface thermal
heterogeneity.

We now consider solutions with P, = 6.0. Table 3 shows the critical Rayleigh number
for m = 1 to be significantly lower than any other wavenumbers for these parameters.
With ¢ = 0 and R = 1900, the solution drifts steadily and is dominated by the m = 1
wavenumber. The linear stability analysis shows that a steady flow, forced by a Y2 heat
flux heterogeneity with ¢ = 0.3, is unstable to a perturbation of the M = 1 class (figure
9 b). A time integration of the full equations leads to a periodic solution, displayed
over a full period in figure 12. The m = 1 and m = 2 flow components have the same
order of magnitude of kinetic energies throughout the cycle, although the m = 2 energy
fluctuates to a greater extent than the m = 1. Unlike in the periodic solution displayed
in figure 10, the boundary heat-flux heterogeneity with ¢ = 0.3 does not greatly inhibit
the propagation of flow. Large density gradients are advected around the interior of the
spherical shell by virtue of the strong m = 1 flow component, such that it is not even
obvious that a cos 2¢ heating mode is being applied to the outer surface. This is contrast
to the solution in figure 10 where the temperature maxima and minima generally occur
at the outer boundary. Such large asymmetric temperature gradients could not occur in

a calculation where the temperature remained fixed at the outer boundary.
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The linear stability analysis shows that a substantially stronger lateral heat-flux vari-
ation of € = 0.7 locks the m = 2 symmetric thermal-wind flow with R approximately
30% above R.. We confirm this with time-step calculations using an (R = 1900,¢ = 0.3)
solution as an initial condition. We now integrate the equations with R = 2300 and
epsilon = 0.7, with the same initial condition. After a short transition time, the sig-
nificant component in odd wavenumbers diminishes entirely and a periodic solution,
containing only even wavenumbers, emerges. Like the solution in figure 10, the kinetic
energy displays a large amplitude variation with time. In this case, the boundary inho-
mogeneity is so strong that the preference for the m = 1 flow favoured by the fixed-flux

boundary condition plays no part in determining the symmetry of the flow.

7. Summary and discussion

The effect of uniform heat-flux boundary conditions on thermal instability in rotating
spherical shells of radius ratio 0.4 has been investigated for infinite Prandtl number and
finite Prandtl numbers between 0.1 and 10.0. The preference for large scale (m = 1)
flows, as demonstrated by Dormy (1997), Gibbons (1998) and Takehiro et al. (1999), is
shown to occur over a wide range of parameters (see figure 6). The effect of the thermal
boundary condition (i.e. the range of Ekman numbers over which m = 1 is the preferred
mode) is greatest for high Prandtl number and rigid fluid boundaries.

In nonlinear calculations, flows with uniform flux heating at the outer boundary display
large length scale characteristics. Takehiro et al. (1999) performed nonlinear numerical
calculations in an cylindrical annulus with inclined boundaries (see Busse 1986) and
showed that, under a fixed heat-flux boundary condition, an asymmetric emergence of

large and small scale cells occurs. The work presented here confirms the speculation
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of Takehiro et al. (1999) that this effect will also arise in three-dimensional spherical

geometry.

We have studied time-dependent convection subject to a lateral heat-flux variation of
a Y32 geometrical pattern for two different cases, which differ in the preferred mode of
convection for the uniform heat-flux boundary problem. In the first case, the Prandtl
number is low (P, = 0.6) and the fixed heat-flux boundary condition is not significant in
selecting the length-scale of the convective flow, m = 2 being optimal for heat transport.
Applying a small lateral heat-flux variation drives a thermal wind flow which, as the
Rayleigh number is increased, becomes unstable to perturbations of the same symmetry.
For a laterally varying heat-flux of 30% of the mean radial temperature gradient, we have
demonstrated a periodic flow where the m = 2 symmetry is not broken. Here, there are
large oscillations in the kinetic energy as the large length-scale part of the flow breaks
down into smaller (m = 4) convection cells in order to propagate past the imposed heat-
flux pattern. Increasing the strength of the lateral flux variation to 40% of the vertical
stabilises the thermal wind flow against perturbations with the same symmetry, and the
instabilities which now arise contain components with odd-numbered m. The symmetry
of the resulting time-dependent flow is broken and the dramatic oscillations in the kinetic
energy observed previously are not exhibited.

In the second case, the higher Prandtl number (P, = 6.0) means that the thermal
boundary condition is more significant in selecting the mode of convection in the uniform
boundary case, and the m = 1 mode is the most unstable. Applying a moderate lateral
heat-flux variation at the surface (30% of the radial temperature gradient) results in a
periodic flow where the m = 1 (preferred mode of convection) and m = 2 (imposed
by boundary heating) components compete. When the lateral heat-flux variation is far

stronger (70% of the radial temperature gradient), the temperature distribution which
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supports the m = 1 flow 1s no longer able to exist and the resulting flow has an m = 2
symmetry; either boundary-locked or, at higher Rayleigh number, periodic with a similar
behaviour to that observed for the lower Prandtl number.

For uniform boundary heat-flux, the large length-scale toroidal flow results from the
density gradients which are able to exist near the outer boundary when the heat-flux
and not the temperature is held constant. Tt is the action of the Coriolis force which
ultimately destroys this strong horizontal flow (at low Ekman number) as the convection
is forced to align with the rotation axis. It is conceivable that, in the presence of a strong
magnetic field, the Lorentz force could counteract the effects of rotation sufficiently to
allow such a surface flow. It is unclear how low E needs to become for such thermal
effects to be insignificant. However, figure (6) shows that even in the non-magnetic case,
when the effects of rotation are the greatest, the large scale flows can occur for most
of the parameter space over which the full dynamo problem is currently numerically
tractable. An east-west hemispherical asymmetry in surface flow and secular variation is
observed for an interval of time in the dynamic dynamo calculation of Kuang & Bloxham
(1998). This model also has fixed heat-flux as the outer boundary condition and it may

be speculated that this results from processes demonstrated here.

S.G. was supported at the University of Exeter by PPARC grant GR/1.22973. The ARPACK
eigenvalue software, which is incorporated into much of the code used in this study, is available
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FIGURE 1. Critical Rayleigh number, R., as a function of the Ekman number, E, for m = 1
to m = 6 in the range 3.162 x 1072 > E > 107° with infinite Prandtl number, n = 0.4
and stress-free boundaries. Heat flux is kept uniform at outer boundary. Both axes are scaled

logarithmically.
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FIGURE 2. m = 1 and m = 4 solutions in the equatorial plane of a drifting frame of reference
for n = 0.4, infinite Prandtl number, stress-free boundaries and uniform heat flux at the outer
boundary. Values of F are as shown; left sides of plots are streamlines of flow with 0 < ¢ < 7 and
right sides of plots are contours of temperature variations with 7 < ¢ < 2. Contours are evenly
spaced and vary between plots. Dotted lines indicate negative values. R.(m = 1) = 695.3 and

Re(m =4) =1073.4 at E =1072. R.(m = 1) = 32776 and R.(m = 4) = 19737 at £ = 107°.
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Truncation | m | Critical Rayleigh number, R. (osc. freq., oi)
(L/N) (E =1.4035 x 107*) | (E =1.3947 x 107*)
(26/50) | 1| 161141.5 (8.3337) | 163493.1 (8.4254)
(28/100) | 1| 160401.4 (8.2891) | 162731.4 (8.3796)
(28/150) 1 160350.5 (8.2859) 162677.7 (8.3762)
(30/150) | 1| 160330.0 (8.2847) | 162657.0 (8.3750)
(32/150) 1 160323.4 (8.2843) 162650.8 (8.3746)
(28/150) [10| 162096.4 (83.497) | 163516.7 (84.009)
(32/150) [10| 161979.5 (83.482) | 163394.8 (83.992)
(26/50) |11| 161334.9 (80.902) | 162724.4 (81.430)
(28/100) [11| 161142.3 (80.732) | 162529.2 (81.259)
(28/150) [11| 161129.1 (80.720) 162515.8 (81.247)
(30/150) [11| 161136.3 (80.719) 162523.3 (81.246)
(32/150) [11| 161140.1 (80.720) 162527.2 (81.246)
(28/150) [12| 161339.4 (77.210) | 162707.8 (77.748)
(32/150) [12| 161316.6 (77.211) | 162684.0 (77.749)
(32/150) [13| 162272.7 (73.038) | 163624.9 (73.585)

TABLE 1. Critical Rayleigh numbers,

flux at r = r,, rigid velocity boundaries and the Ekman numbers F =

R., for selected wavenumbers,

infinite P,, fixed heat

1.4035 x 10™*

and

E = 1.3947 x 10~*. R, is higher than those shown for all other wavenumbers. The oscillation

frequency, oj, is given in brackets.
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1.8900 x 107° 9933 10049
1.4142 x 1072 14193 14107
8.1650 x 10~* 26660 26843

TABLE 2. Critical Rayleigh numbers, R., for m = 7 and m = 8 for infinite P,, fixed heat flux at
r = r, and stress-free boundaries. For these parameters, R, for all other wavenumbers is higher

than those for m = 7 and m = 8. Figures are converged to 0.02%.

m | R. with P, =0.6 | R. with P, =6.0
1 1145.1 1588.5
2 1053.1 2027.0
3 1104.2 2050.5
4 1350.5 2059.5
5 1801.6 2241.4
6 2410.8 2572.8

TABLE 3. Critical Rayleigh numbers, R., for selected wavenumbers, with uniform heat flux at

r = r,, stress-free velocity boundaries and the £ = 5 x 1072, Figures are converged to 0.01%.
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Fixed heat flux
at boundary

Fixed
temperature
at boundary
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FIGURE 3. Solutions at £ = 3.162 x 10™* for the m = 8 modes for both fixed temperature
and fixed heat-flux outer boundary conditions. Solutions are shown at onset in the equatorial

plane (§ = /2,0 < ¢ < m) in a rotating frame of reference. Contour levels vary between plots.

Boundaries are stress-free and P, is infinite.
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4/3
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FI1GURE 4. RCE4/3, as a function of the Ekman number, E, for m = 1 to m = 10 in the range
3.162 x 1072 > E > 10~* with infinite Prandtl number, n = 0.4 and rigid boundaries. Heat flux

kept uniform at outer boundary.
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FIGURE 5. Solutions for m = 1, m = 2 and m = 6 modes at £ = 1072 and E = 3.162x10™* when

n = 0.4, heat flux is kept constant at the outer surface and boundaries are rigid. All plots show, in
arotating frame of reference, lines of flow in the equatorial section § = 7/2 , 0 < ¢ < 7 (left side
diagrams) and contours of © in the equatorial section § = /2, 7 < ¢ < 2r (right side diagrams).
In the case E = 1072; R:(m = 1) = 20804, R.(m = 2) = 13848 and R.(m = 6) = 22004. In the

case F =3.162 x 107*; R.(m =1) =38717, R.(m = 2) = 59542 and R.(m = 6) = 56257.
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F1GURE 8. Lines of flow (left) and contours of temperature (right) in equatorial section for the
steady flow locked by a Y;*¢ variation in the heat-flux at the outer boundary. R = 800, € = 0.3,

P, =0.6, E=5 x 107%, and boundaries are stress-free.
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FIGURE 10. Periodic solution for E = 5 x 107%, R = 1200, ¢ = 0.30, P, = 0.6 and g = Y,*°.
Diagram e) shows the kinetic energy in various velocity components against time. The plots
show contours of v, (left), vy (centre) and T (right) in an equatorial half plane for the times

t=0.25 (a), t = 0.50 (b), t = 0.75 (c) and ¢ = 1.00 (d).
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FIGURE 11. Kinetic energy of flow subject to a Y;*° heat-flux variation for R = 1200, € = 0.4,

P,=06, F=5x 10~2 and stress-free boundaries.



Convection in rotating spherical flurd shells 41

C) 16

14

Kinetic energy

a b
0 1 il
0 02 04 06 08 10

L

Time

FIGURE 12. Periodic solution for E = 5 x 107%, R = 1900, ¢ = 0.30, P, = 6.0 and g = Y,*°.
Diagram c) shows the kinetic energy in the velocity components with m = 1 and m = 2 (the
energy in other wavenumbers is insignificant). The plots show contours of v, (left) and T (right)

in an equatorial section for the times £ = 0.125 (a) and ¢ = 0.625 (b).



